Extending Monolingual Semantic Textual Similarity Task to Multiple Cross-lingual Settings
نویسندگان
چکیده
This paper describes our independent effort for extending the monolingual semantic textual similarity (STS) task setting to multiple cross-lingual settings involving English, Japanese, and Chinese. So far, we have adopted a “monolingual similarity after translation” strategy to predict the semantic similarity between a pair of sentences in different languages. With this strategy, a monolingual similarity method is applied after having (one of) the target sentences translated into a pivot language. Therefore, this paper specifically details the required and developed resources to implement this framework, while presenting our current results for English-Japanese-Chinese cross-lingual STS tasks that may exemplify the validity of the framework.
منابع مشابه
ECNU at SemEval-2017 Task 1: Leverage Kernel-based Traditional NLP features and Neural Networks to Build a Universal Model for Multilingual and Cross-lingual Semantic Textual Similarity
To model semantic similarity for multilingual and cross-lingual sentence pairs, we first translate foreign languages into English, and then build an efficient monolingual English system with multiple NLP features. Our system is further supported by deep learning models and our best run achieves the mean Pearson correlation 73.16% in primary track.
متن کاملSemEval-2016 Task 1: Semantic Textual Similarity, Monolingual and Cross-Lingual Evaluation
Semantic Textual Similarity (STS) seeks to measure the degree of semantic equivalence between two snippets of text. Similarity is expressed on an ordinal scale that spans from semantic equivalence to complete unrelatedness. Intermediate values capture specifically defined levels of partial similarity. While prior evaluations constrained themselves to just monolingual snippets of text, the 2016 ...
متن کاملMITRE at SemEval-2017 Task 1: Simple Semantic Similarity
This paper describes MITRE’s participation in the Semantic Textual Similarity task (SemEval-2017 Task 1), which evaluated machine learning approaches to the identification of similar meaning among text snippets in English, Arabic, Spanish, and Turkish. We detail the techniques we explored, ranging from simple bag-ofngrams classifiers to neural architectures with varied attention and alignment m...
متن کاملFCICU at SemEval-2017 Task 1: Sense-Based Language Independent Semantic Textual Similarity Approach
This paper describes FCICU team systems that participated in SemEval-2017 Semantic Textual Similarity task (Task1) for monolingual and cross-lingual sentence pairs. A sense-based language independent textual similarity approach is presented, in which a proposed alignment similarity method coupled with new usage of a semantic network (BabelNet) is used. Additionally, a previously proposed integr...
متن کاملSTS-UHH at SemEval-2017 Task 1: Scoring Semantic Textual Similarity Using Supervised and Unsupervised Ensemble
This paper reports the STS-UHH participation in the SemEval 2017 shared Task 1 of Semantic Textual Similarity (STS). Overall, we submitted 3 runs covering monolingual and cross-lingual STS tracks. Our participation involves two approaches: unsupervised approach, which estimates a word alignment-based similarity score, and supervised approach, which combines dependency graph similarity and cover...
متن کامل